-
丙酮酸
丙酮酸,又称a-氧代丙酸,结构为C H3CO CO O H,是所有生物细胞糖代谢及体内多种物质相互转化的重要中间体,因分子中包含活化酮和羧基基团,所以作为一种基本化工原料广泛应用于化学、制药、食品、农业及环保等各个领域中,可通过化学合成和生物技术多种方法制备。
- 中文名
- 丙酮酸
- 英文名
- Pyruvic acid
- 别称
- 2-氧代丙酸、乙酰甲酸
- 化学式
- C3H4O3
- 分子量
- 88.06
- CAS登
- 127-17-3
- 熔点
- 11.8℃
- 沸点
- 165℃
基本信息
- 中文名
- 丙酮酸
- 英文名
- Pyruvic acid
- 别 称
- 2-氧代丙酸、乙酰甲酸
- 化学式
- C3H4O3
- 分子量
- 88.06
- CAS登录号
- 127-17-3
- 熔 点
- 11.8℃
- 沸 点
- 165℃
- 水溶性
- 与水混溶
- 密 度
- 1.250g/cm3
- 外 观
- 浅黄色至黄色的透明液体
基本资料
中文名称:丙酮酸。
中文同义词:2-氧代丙酸;乙酰甲酸;丙酮酸;A-酮基丙酸;乙醯甲酸;丙酮酸 PYRUVIC ACID;乙酰基甲酸;丙酮酸。
英文名称:Pyruvic acid。
物理性质
浅黄色至黄色的透明液体。有醋酸气味。有酸味。天然品存在于薄荷及蔗糖发酵液中。相对分子质量88.06。相对密度1.2271。熔点13.8℃。沸点165℃(分解)、106.5℃(13.332×103Pa)、85.3℃(5.333×103 Pa)、70.8℃(2.666×103Pa)、57.9℃(1.333×103 Pa)、45.8℃(0.667×103Pa)、21.4℃(0.133×103 Pa)。闪点82℃。折射率1.4280。与水、乙醇、乙醚等混溶。
化学性质
在空气中颜色变暗。加热时缓慢聚合,富有反应性,容易与氮化物、醛、卤化物、磷化物等反应,参与生物体的糖代谢、胶质、氨基酸、蛋白质等的生化合成、代谢、醇的发酵等。当用力时,在肌肉中被还原为乳酸,休息时再次氧化并部分转变为糖原。大鼠经口LD502100mg/kg。丙酮酸是人体的一种成分,在人体内主要参与糖、脂肪等的代谢,也是碳水化合物代谢的中间产物之一。
作用
在代谢中的作用
丙酮酸是一种酸性较弱的有机酸, 分子中同时具有羰基和羧基两个官能团, 它除具有羧酸和酮的性质外, 还具有α- 酮酸的性质, 是最简单的α- 酮酸(属于羰基酸)。丙酮酸是体内产生的三碳酮酸, 它是糖酵解途径的最终产物, 在细胞浆中还原成乳酸供能, 或进入线粒体内氧化生成乙酰CoA, 进入三羧酸循环, 被氧化成二氧化碳和水, 完成葡萄糖的有氧氧化供能过程。丙酮酸还可通过乙酰CoA 和三羧酸循环实现体内糖、脂肪和氨基酸间的相互转化, 因此, 丙酮酸在三大营养物质的代谢联系中起着重要的枢纽作用 。
抗氧化作用
有研究已表明, 丙酮酸能抑制鼠体内氧自由基的氧化作用, 同时作为一种过氧化氢清除剂, 具有防止自由基损伤的作用, 已在心脏再灌注损伤和急性肾衰竭中证实具有保护机体抗功能性损伤。丙酮酸可通过两种机制起到抗氧化作用: 其一, 作为一种α- 酮酸, 丙酮酸可直接通过非酶促的去碳酸基反应抑制过氧化氢; 其二,补充丙酮酸可增强柠檬酸循环, 柠檬酸产生增多后, 抑制磷酸果糖激酶, 从而进入磷酸戊糖旁路, 产生还原型辅酶Ⅱ(NADPH) , 从而间接地增加谷胱甘肽(GSH) 抗氧化系统的能力。丙酮酸还可增加辅酶Ⅰ/ 还原型辅酶Ⅰ(NAD+/NADH) 的比值, 促进三羧酸循环反应。
合成方法
酒石酸脱水脱羧法
此法工艺简单易行:将酒石酸与硫酸氢钾混合物在220℃下蒸馏,馏出物再经真空精馏即得丙酮酸。此法的特点是加入导热油之后,在一个均匀体系中进行反应,降低了反应温度,减少氧化程度,可操作性大幅度提高,适合继续反应生成丙酮酸系列产品。其缺点是丙酮酸产率较底,得1g丙酮酸需消耗5g硫酸氢钾。仅原料成本就达8万元每吨,因成本过高而无法为大多数厂家所接受。
乳酸氧化法
以乳酸为原料,氧化脱氢一步法生产丙酮酸。但乳酸直接制取丙酮酸非常困难,根据工艺不同必须选用合适的催化剂。可以选择的催化剂有磷酸铁、钼酸碲盐、银、钒等。此法酒石酸的氧化脱羧法相比,具有能耗低、污染小、产率高等优点,适合工业化生产。其缺点是成本也较高,约6万元每吨。
酶催化法
用酶或微生物细胞作催化剂,使葡萄糖或三羧酸循环的某些中间代谢产物,在一定条件下,转化为丙酮酸的技术,称为酶催化法。其主要过程是先进行小规模的微生物培养,菌体收集,直接转化或用载体包埋成固定化酶,然后转化生成丙酮酸。 酶催化法设备投资小,能耗低,转化率高,但底物来源较窄、成本比较高约5万元每吨,因此其进一步推广受到限制。
基因工程技术
利用基因重组技术构建高表达乙醇酸氧化酶、过氧化氢酶等的基因工程菌,用于生产丙酮酸的技术。这些酶能催化乳酸与氧反应生成丙酮酸。其技术是先将乙醇酸氧化酶基因和过氧化氢酶基因分别与DNA载体重组,构成重组子,并分别转入宿主细胞,分别获得两种酶高表达的基因工程酵母,按0.713m ol/LL-乳酸钠溶液每100ml加湿重转化体5g,同时加一定量渗透剂,在5个大气压下,以70psig氧压通入氧气,5℃搅拌转化4小时,丙酮酸产率大97.7%。本技术底物转化率高,但技术难度大。
微生物发酵法
微生物代谢过程中,利用葡萄糖积累丙酮酸的过程称为微生物发酵法。微生物发酵法生产丙酮酸研究已有50年历史,但因丙酮酸高产菌株选育十分困难,虽有一些微生物能够积累丙酮酸,但其产量无法达到工业化要求。该法生产丙酮酸真正取得突破,是在1988年时,日本东丽工业株式会社的研究人员宫田令子和米原辙选育出一系列丙酮酸产量超过50g/L的球拟酵母菌株,使微生物发酵法生产丙酮酸的工业化成为可能。1992年,日本开始采用微生物发酵法生产丙酮酸。产量为400吨每年,成本约为2-3万元每吨。
与化学合成法和酶转化法相比,微生物发酵法因原料来源广,能耗低,污染少,成本低而更具有优越性。但微生物发酵法缺点是转化率比较低,这是因为丙酮酸是糖酵解途径的关键中间产物,在细胞中,丙酮酸作为一种重要的中间代谢产物连接了EM P和TCA中心代谢途径,又与多条分支代谢途径相关联,可转化为多种发酵产物而无法在体内积累。因此需要切断或弱化其进一步代谢,才能使其在细胞中大量积累。即加快葡萄糖向丙酮酸的转化率,减弱向TCA循环的通量,切断或减弱其分支代谢途径,促进分泌,减弱丙酮酸的再利用,最终实现丙酮酸的大量积累。为达此目的,就必须对微生物发酵法生产丙酮酸的影响因素进行研究。
免责声明:本资料来源于网络,如果侵犯了你的版权或其他权利,请通知我及时删除。